Hilbert space structure in classical mechanics. II
نویسندگان
چکیده
منابع مشابه
Classical Mechanics in Hilbert Space , Part 2
We continue from Part 1. We will illustrate the general theory of Hamiltonian mechanics in the Lie group formalism. We then obtain the Hamiltonian formalism in the Hilbert spaces of square integrable functions on the symplectic spaces. We illustrate this general theory with several concrete examples, two of which are the representations of the Lorentz group and the Poincaré group with interacti...
متن کاملBicomplex Quantum Mechanics: II. The Hilbert Space
Using the bicomplex numbers T which is a commutative ring with zero divisors defined by T = {w0+w1i1+w2i2+ w3j | w0, w1, w2, w3 ∈ R} where i21 = −1, i22 = −1, j = 1, i1i2 = j = i2i1, we construct hyperbolic and bicomplex Hilbert spaces. Linear functionals and dual spaces are considered on these spaces and properties of linear operators are obtain; in particular it is established that the eigenv...
متن کاملHilbert Space Quantum Mechanics
1 Vectors (Kets) 1 1.1 Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Qubit or spin half . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Intuitive picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 General d . . . . . . . . . . . . . . . . . . ...
متن کاملQuantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space
Classical mechanics is formulated in Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket, and a quasidensity operator. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Classical mechanics can now be viewed as a deformation of quantum mechanics. The forms of sem...
متن کاملQuantum Mechanics beyond Hilbert Space
When describing a quantum mechanical system, it is convenient to consider state vectors that do not belong to the Hilbert space. In the rst part of this paper, we survey the various formalisms have been introduced for giving a rigorous mathematical justiication to this procedure: rigged Hilbert spaces (RHS), scales or lattices of Hilbert spaces (LHS), nested Hilbert spaces, partial inner produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2003
ISSN: 0022-2488
DOI: 10.1063/1.1623334